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Figure 1: (i) The 𝐶/𝐷𝐶 task condition used in Experiment 1, where the crossing areas of targets face each other. (ii) The 𝐶/𝐴𝐶
task condition used in Experiment 2, where the target crossing areas are horizontally aligned. In both tasks, the cursor was
shown as a black cross at the same position as the stylus tip. The cursor trajectory was shown as a blue line.

ABSTRACT
In pointing, throughput TP is used as a performance metric for
the input device and operator. Based on the calculation of effective
parameters (width𝑊𝑒 and amplitude 𝐴𝑒 ), TP should be indepen-
dent of the speed-accuracy tradeoff. To examine the validity of
TP and effective parameters for crossing actions, we conducted
two experiments using two established crossing tasks. Our results
demonstrate that applying effective parameters to Fitts’ law model
improves the fit to the data for mixed biases in both tasks. Besides,
we observed that effective parameters smoothed TPs across biases.
However, unlike pointing, TP was observed to be unstable across
IDs in one task, while was stable across IDs in the other task. An-
alyzing speed profiles showed that this was likely due to the fact
that one of the tasks could be completed with a ballistic movement
at low IDs, whereas this was impossible for the other task.
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1 INTRODUCTION
Pointing tasks are frequently used to measure the performance
of input devices and user groups when operating GUIs. However,
in GUIs, there also exist trajectory-based tasks, in which users
draw strokes. Crossing is a typical example of such tasks (Fig. 1),
and many novel interaction techniques have been proposed for
it [4, 10, 11, 15].

The movement time MT for crossing can be predicted by the
same Fitts’ law model as for pointing [1]. In pointing, Throughput
TP is used as a measurement of performance for input devices and
user groups. Theoretically, TP should be unaffected by Fitts’ law’s
Index of Difficulty ID [17]. However, operating with different speed
or accuracy biases (Bias), the TP calculated with the nominal ID, or
IDn, using the nominal target width𝑊 and amplitude 𝐴 between
targets has been shown to be different for each Bias [20]. To resolve
this issue, prior work recommended to smooth the difference of the
Bias by using the IDe , which is calculated with the effective width
𝑊𝑒 and effective amplitude 𝐴𝑒 [18]. This enables a fair comparison
of performance even when a user group interacts through various
devices with different speed-accuracy balances. However, although
Fitts’ law predicts the MT of crossing, the effect of using effective
parameters on crossing tasks has not been empirically verified.

To examine the applicability of throughput and effective param-
eters for crossing, we conducted experiments with two types of
crossing tasks under three speed-accuracy biases. If effective pa-
rameters can appropriately normalize the speed-accuracy bias, the
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model �t when analyzing all biases in a mixed manner should then
improve compared to the use of nominal parameters, and theTPs
across all biases should be close to each other.

In Experiment 1, we investigated continuous crossing with a
directional constraint (� • �� ) task [5] in which the targets were
facing each other (Fig. 1 (i)). In Experiment 2, we looked at continu-
ous crossing within an amplitude constraint (� •�� ) task [5] where
targets were horizontally aligned (Fig. 1 (ii)). Results showed that
in both tasks, applying e�ective parameters to the Fitts' law model
improves the �t when analyzing the data across di�erent biases.
Besides, we identi�ed thatTPs were smoothed across biases by cal-
culatingTPusing e�ective parameters in both tasks. However, we
also con�rmed thatTPwas not stable acrossIDs in the� • �� task,
while it was stable in the� •�� task. This indicated that the range
of tasks whereTPcan be used as a measurement of performance in
crossing may be limited. We thus also discuss the conditions where
TPis stable acrossIDs in crossing.

2 RELATED WORK
Fitts' law [12, 16] can predict the movement timeMT of pointing
on the basis of the index of di�cultyID, speci�cally through the
nominal ID (IDn):

") = 0 ¸ 1 � IDn• F8C�IDn = log2 ¹� •, ¸ 1º • (1)

where� is the amplitude between targets,, is the target width,
and0 and1 are empirical constants.

In the process of deriving the steering law [1], Accot and Zhai
showed that theMT of crossing is predicted by Fitts' law. This
�nding held strongly for various types of crossing tasks [2, 5].

Fitts' law is based on the task parameters, and� , and does
not account for the parameters associated with the user's actual
behavior. Therefore, replacing� and, with e�ective parameters
enables more accurate prediction of theMT [22]:

") = 0 ¸ 1 � IDe• F8C�IDe = log2 ¹� 4•, 4 ¸ 1º • (2)

where� 4 is the mean movement distance on the task axis,, 4 is
4”133� f , andf is the standard deviation of the cursor endpoints
[22]. This de�nition of , 4 ensures that96%of the endpoints fall
inside the target boundary, and� 4 is the actual movement distance
on average on the task axis; both can more accurately represent
the user's behavior [22]. To avoid potential confusion, we denote
ID using the nominal parameters asIDn hereafter, and useID as a
generic term forIDn andIDe.

Throughput,TPwas standardized by ISO9241-9 and is calculated
as follows [23].

TP= ID•MT (3)

In pointing, TPis considered to be independent ofID [17]. In other
words, even if theID changes, theMT also changes accordingly
and thusTPremains (more or less) constant.

Mackenzie and Isokoski conducted a pointing experiment with
three Biasconditions: speed-emphasis, accuracy-emphasis, and
nominal (i.e., neutral) [18]. In the speed- or accuracy-emphasis
condition, the participants were asked to change theirMTs by 10%
compared with the nominal condition. There was no signi�cant
di�erence in TPusingIDe across di�erentBiases, and thusTPcould
smooth out di�erences inBias. However, Olafsdottir et al. showed

that when the bias is larger than 10%, the invariance ofTPwas not
observed [20].

Zhai et al. revealed that usingIDe showed a higher �t when ana-
lyzing the data from multiple biases in a mixed manner (called the
Mixedanalysis condition) than usingIDn in pointing [26]. However,
for each individualBias(such as Accurate, Neutral, and Fast), the
IDn model showed higher �t than theIDe model. This indicates that
the IDe model improves the �t forMixedat the expense of a higher
prediction accuracy of theIDn model in each individualBias.

Luo and Vogel tested the applicability of, 4 to crossing with
direct �nger input, found that Finger-Fitts law showed a good �t,
and compared it with the results using, and, 4 [14]. To our
knowledge, this is the only study in which, 4 was applied to cross-
ing. The purpose of their study was to compare the �ts ofIDn, IDe,
and Finger-FittsID with a singleBias. Still, previous work has not
veri�ed whether the e�ective parameters can smooth the e�ect of
Biason the �t and TP.

3 EXPERIMENT 1
We conducted a study of theC•DCcrossing task where targets face
each other (Fig. 1 (i)). Ten university students joined (3 females and
7 males, mean age 20.7, standard deviation 1.06). All participants
were right-handed.

3.1 Apparatus
We used a laptop PC (Intel Core i7-11800H, GeForce RTX 3070
Laptop, 16GB RAM, Windows 10 education), LCD tablet (Wacom
Cintiq 27QHD, IPS,569”7� 335”6mm,2560� 1440pixels), and Wacom
stylus. The system was made with Unity and displayed in full screen
mode.

3.2 Design
For this experiment, we used a3Bias� 3� � 5, repeated-measures
design. The within-subjects factors wereBias(Accurate, Neutral,
Fast), amplitude� (46.60 mm, 128.2 mm, 205.0 mm), and width,
(1.864 mm, 3.495 mm, 6.524 mm, 11.65 mm, 23.30 mm). A taskset
comprised the 15 combinations of� and, presented in random
order, and 21 such sets were performed in eachBiascondition. The
ten participants were randomly divided into two groups of �ve.
Group 1 was tested in the order of Neutral, Fast, and Accurate.
Group 2 was tested in the order of Neutral, Accurate, and Fast. This
ordering, i.e., the Neutral condition as the �rst condition, allowed
the participants to perform the task more rapidly/slowly in the
remaining twoBiasconditions relative to the �rst one, which is the
same design as used in a previous study [25].

3.3 Procedure
First, the task was explained to the participants, i.e., that they had
to perform a stroke from the start target (right) to the end target
(left)1. The task was then completed by passing the start target
from right to left and then passing the end target (also from right
to left). During the task, participants had to keep the stylus tip
on the screen. While the stylus tip was on the screen, a blue tra-
jectory was displayed, and when the stylus tip was lifted o� the

1To prevent the target from being occluded by the hand during the task, we restricted
participants to right-handed ones and used right-to-left strokes.
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screen, the trajectory disappeared. Before starting eachBiascon-
dition, participants were instructed to perform the task either �as
fast and as accurately as possible� for Neutral, �as fast as possible
without worrying about mistakes� for Fast, and �as accurately as
possible without worrying about time� for Accurate. Once partici-
pants passed through the start target, the task was considered to be
started; if participants initially passed outside it, they had to con-
sequently try crossing it again. After the task started, participants
were required to cross the end target without lifting the stylus from
the screen. If the stylus crossed the end target, we recorded a suc-
cess; otherwise, an error was recorded. Subsequently, appropriate
audio and visual feedback was presented depending if the trial was
successful or erroneous. If the stylus was lifted in the middle of a
trial, the trial had to be restarted by crossing the start target. After
each trial ended, releasing the stylus from the screen displayed
a button labeled �Next�, and the participants needed to tap it to
proceed to the next trial.

3.4 Measurement
All positions of the stylus tip during task execution were recorded
with a time stamp. The dependent variables wereER(Error Rate),
MT (Movement Time),f (Standard Deviation of Endpoints), andTP
(Throughput).ERwas the percentage of trials in which the cursor
passed outside the end target.MT was the time taken for each trial
to complete. Forf , we computed the deviation from the target's
midpoint when the cursor passed through that target (or its vertical
extension).We was calculated by multiplyingf by 4”133, and96%
of the crossing points at the end targets fell within thisWe [22]. TP
was calculated byMT•ID, and two types ofTPwere analyzed:TPn
derived byIDn calculated from, and� , andTPe derived byIDe
calculated from, 4 and� 4.

4 RESULTS OF EXPERIMENT 1
The �rst set consisting of 15 trials in eachBiascondition was con-
sidered as practice, and the remaining 9000 trials (3Bias� 3� � 5, �
20sets� 10participants) were analyzed. Since ANOVA is robust
against normality violation [9, 19], we analyzed all 9000 trials by
mean-of-means calculation via RM-ANOVA with a Bonferroni post-
hoc test. The independent variables wereBias, � , and, , and the
dependent variablesER(error rate),MT, f (the deviation from the
midpoint of the target at the end of the stroke), andTP. Throughout
this paper, error bars in the graphs indicate 95% CIs. ***, **, and * in
the graphs indicate? < .001,? < .01, and? < .05, respectively.

4.1 Error Rate (ER)
We observed 1187 erroneous trials, where uses passed outside the
�nal target (13”2%). Signi�cant main e�ects were found onBias
(� 2•18 = 39”0• ? Ÿ ”001• [ 2

? = ”813), � (� 2•18 = 10”1• ? Ÿ ”01• [ 2
? =

”529), and, (� 4•36 = 85”9• ? Ÿ ”001• [ 2
? = ”905). Also, we identi�ed

signi�cant di�erences for all Biaspairs (Fig. 2 (i)). Further, we found
signi�cant interactions onBias� � (� 4•36 = 7”27• ? Ÿ ”001• [ 2

? =
”447), andBias� , (� 8•72 = 23”4• ? Ÿ ”001• [ 2

? = ”723).

4.2 Movement Time ( MT )
We analyzed theMT for all 9000 trials (because, 4 normalizes
the ERto 4%). Signi�cant main e�ects were found onBias(� 2•18 =
43”7• ? Ÿ ”001• [ 2

? = ”829), � (� 2•18 = 110• ? Ÿ ”001• [ 2
? = ”924),

and, (� 4•36 = 104• ? Ÿ ”001• [ 2
? = ”920). Signi�cant di�erences

were found on allBiaspairs (Fig. 2 (ii)). Signi�cant interactions
were found onBias� � (� 4•36 = 34”3• ? Ÿ ”001• [ 2

? = ”792), Bias� ,
(� 8•72 = 32”7• ? Ÿ ”001• [ 2

? = ”784),� � , (� 8•72 = 38”9• ? Ÿ ”001• [ 2
? =

”812), andBias� � � , (� 16•144= 2”55• ? Ÿ ”01• [ 2
? = ”221).

4.3 Standard Deviation at the Endpoint
We analyzed the standard deviation of the endpoint scatter data
(f ). Signi�cant main e�ects were found onBias(� 2•18 = 24”7• ? Ÿ
”001• [ 2

? = ”733), � (� 2•18 = 52”2• ? Ÿ ”001• [ 2
? = ”853), and,

(� 4•36 = 106• ? Ÿ ”001• [ 2
? = ”922). Signi�cant interactions were

found on Bias� � (� 4•36 = 9”67• ? Ÿ ”001• [ 2
? = ”518), Bias� ,

(� 8•72 = 2”58• ? Ÿ ”05• [ 2
? = ”223), and� � , (� 8•72 = 3”79• ? Ÿ

”001• [ 2
? = ”296).

4.4 Model Fitting
For eachBias, the baseline Fitts' law model (IDn) showed strong
�ts (Fig. 2 (v)). UsingIDe with , 4

2 showed poorer �ts for eachBias
(Fig. 2 (vi)). Since the number of free parameters is 2 for bothIDn
andIDe, we used non-adjusted' 2 values in this paper. In addition,
to analyze the �ts in a comparative manner, we used theAIC mea-
sure [3]. The lower theAIC, the better the �t, and a di�erence of 2
or more is considered to be signi�cant [7]. The di�erences in the
AICs betweenIDn andIDe at eachBiaswere 16 for Neutral, 3 for
Fast, and 12 for Accurate, i.e., all larger than 2. Therefore, theIDn
model better predicts theMT for eachBias.

For a mixedBias(Mixed), the �t of the IDe model was better
than theIDn model (Fig. 2 (v, vi)). The di�erence in terms ofAIC
was approximately 58 and thus clearly signi�cant. Therefore, the
IDe model is recommended to predict theMT from data that may
contain multiple biases.

4.5 Throughput ( TP)
We analyzed theTPcalculated usingIDn (TPn) andIDe (TPe).

4.5.1 TPn. Signi�cant main e�ects were found onBias(� 2•18 =
54”5• ? Ÿ ”001• [ 2

? = ”858), � (� 2•18 = 84”6• ? Ÿ ”001• [ 2
? = ”904),

and, (� 4•36 = 16”2• ? Ÿ ”001• [ 2
? = ”922). Signi�cant di�erences

were found on allBiaspairs (Fig. 2 (iii)). Signi�cant interactions
were found onBias� � (� 4•36 = 50”8• ? Ÿ ”001• [ 2

? = ”849), Bias� ,
(� 8•72 = 6”25• ? Ÿ ”001• [ 2

? = ”410),� � , (� 8•72 = 14”3• ? Ÿ ”001• [ 2
? =

”613), andBias� � � , (� 16•144= 6”39• ? Ÿ ”001• [ 2
? = ”415).

4.5.2 TPe. Signi�cant main e�ects were found onBias(� 2•18 =
53”0• ? Ÿ ”001• [ 2

? = ”855), � (� 2•18 = 103• ? Ÿ ”001• [ 2
? = ”919), and

, (� 4•36 = 69”4• ? Ÿ ”001• [ 2
? = ”885). Signi�cant di�erences were

found on allBiaspairs (Fig. 2 (iv)). Signi�cant interactions were
found on Bias� � (� 4•36 = 34”8• ? Ÿ ”001• [ 2

? = ”795), Bias� ,

2In Experiment 1, we did not use� 4 because the actual cursor trajectory distance
along the task axis was always the same as� .
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